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|. Status of Effort

In this project the dissimilarity between streamwise velocity and temperature Eloged or non-
perturbed (where 'developed condition’ means a region downstreapofnt beyond which the flow
field’s behavior is streamwise invariant) and perturbed turbulent cthamieplane Couette flows, was
addressed using direct numerical simulations, DNS. The main goal of thdyg atidressing the dis-
similarity between streamwise velocity and temperature, was to obtain insights thatdceurbulent
heat-transfer modeling based on Reynolds stress (Note that througisrdport the expressianean-

field dissimilaritywill be used for the differenc&/ — ©) in dimensionless form, whei@ and© are the



mean streamwise velocity and temperature, respectidébgimilarity of streamwise velocity and tem-
perature fluctuation$or the dimensionless difference’ — ¢’); streamwise turbulent flux dissimilarity
for the dimensionless differendéu’v’) — (#’v’)); andwall-normal turbulent flux dissimilarityor the
dimensionless differendgu’v’) — (6'v'))).

First the natural dissimilarity of streamwise velocity and temperature fluctuatiomen-perturbed
turbulent channel and plane Couette flows, was characterized (KastiRiahardson, 1963; Fulachier
and Dumas, 1976; Antonia et. al, 1987). For both of the flow configuratiafiReynolds number based
on the friction velocity of about 150 was used (Pasinato, H.D., Velocity angéeature dissimilarity in
fully developed turbulent channel and plane Couette Flémis,). Heat F. Flow 32, pp. 11-25, 2011).

In the second part the dissimilarity between the mean turbulent fluxes ofrstiea velocity and
temperature in perturbed turbulent flows was characterized (Kongi, @hd Lee, 2001). Numerical
experiments for turbulent channel and plane Couette flows were implememitbdanalogous mean
streamwise velocities and temperatures in developed conditions, which wearperturbed in different
ways in a second DNS. To provide inflow boundary conditions for théugeed-developing flow, a
parallel DNS with identical numerical resolution was performed. The peations used in the study
were (a) local blowing or suction from a narrow span-wise slot at tHsw() local streamwise pressure-
gradient steps, adverse and favorable, in a narrow span-wise vahuime buffer region, (c) local wall-
normal pressure-gradient steps in a narrow span-wise volume in tfer begion, and (d) local wall
temperature steps. The main idea was to study the disruption of mean-field sindlaitp turbulence
in perturbed turbulent flows and to study the main causes of dissimilarity of thalémt fluxes for
streamwise momentum and heat (Pasinato, H.D., Streamwise Velocity and TemgBiasimilarity in

Perturbed Channel and Plane Couette flows, to be submitted).
II. Accomplishments and New Findings

=> It was found that the natural dissimilarities were more associated with thes¢san(Q2 + Q4),
according to the quadrant analysis technique (at aboit ) for both flow configurations. In
other words, the same types of events responsible for wall-normal tatbillees (streamwise

momentum and heat) are also responsible in part for the dissimilarities.

=> In the frequency domain it was shown that the dissimilarity is caused by atehiftrd higher
frequencies as the distance from the wall increases fof’'tepectrum in comparison with the

spectrum.



=> At the wall-layer the¥’ spectrum presented higher frequencies tliaand lower frequencies than
¢’ (and also thadp’/dx spectrum ). These differences generate a more significant corretdtion
¢ with 9p’ /0x thanu' with 9p’ /0. This correlation difference is the main cause of the dissimi-
larities in non-perturbed turbulent flows; or in the decorrelatiom/adindé’ from the wall toward

the central region.
=> For perturbed turbulent flow the dissimilarity for both flow configurationserenalogous.

=> The contribution to the mean-field dissimilarity by turbulent fluxes dissimilarity wasror part

in comparison with the pressure gradient contribution.

=> The contribution to mean-field dissimilarity by the streamwise turbulent fluxes,’) — (u'¢’)),
mainly occurs in the perturbation region, while those due to wall-normal fluxes’) — (v'60')),

occurs mostly downstream of the perturbation region.

=> The wall-normal turbulent fluxes make a greater contribution to mean-fieihaiarity than the

streamwise fluxes.

=> The leading dissimilarity contributor to the wall-normal turbulent fluxes dissimilavég(v'v')0® /dy,

where? is the differencelU — ©).

=> A simple transformation of the Reynolds stresses in the streamwise and wal&ihdirection,

(u'u'), (u'v'), gives a reasonabkeprior prediction of the turbulent heat fluxég'v’), (8'v').

I11. Natural dissimilarity in non-perturbed turbulent flows

(Ill.a) Definition of a new variable to measure dissimilarity

In the numerical experiments the streamwise velocity and temperature arg@mala the mean values
(the Reynolds averaged conservation laws for streamwise velocity aneétatue, with some restric-
tions as constant fluid propertie®r = 1, and identical boundary conditions, are analogous). Thus

¢»=(U—-0)+ (v —¢), resulting thatp = ¢ + ¢’ as all variables, where the variancegdfis

VAR(#) = (¢7)* = (u'u) = (W/0') +(0'0") — (u'0)). 1)

The local variancé” AR(¢’) was used as a measure of the mean local dissimilarity and the averaged

variancel’ AR(¢') ., as an averaged value in the whole domain.
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Figure 1: Percentage oV AR(¢') for events with different conditions. Solid Iine}?(qz/S’\2 > k¢ 00’ < 0);
————— , P(g\2 > k¢+2;0/’17<0); o. o .o, P(J\2 > k¢t2uo’ < 0;0 < 0); D000,
P(@2 > k¢T200 <00 <0); > - > - > - >, P(¢'2 > k¢t2,0p' /0 > 0). (a) Channel flow; (b)

Couette flow.

(Ill.b) Characterization of a wall-layer event associated with dissimilaritynom-perturbed turbulent
flows

The relationship betweevi AR(¢') and those characteristic events in the wall layer responsible for the
wall-normal turbulent transport was studied using conditional probabliige association of these events
with the dissimilarity was evaluated by first detecting events that satisfy thét'u:m'mi/’\2 > ko2, where
¢ is a long-term statistic from a previous large sample, k is a parametea/b’\%uisjthe variance of the
dissimilarity during this event. Then, once an event with this condition wastgeteghich for simplicity
was called an important dissimilarity event (IDE), a second (or even a ttimatjition (e.g., the sign of
the wall-normal velocity’ < 0, etc.) was evaluated, and its dissimilarfityd R(¢');pr Was evaluated.
A detection algorithm, analogous to those used in the literature to detect bujgiction events, was
used (Blackwelder and Haritonidis, 1983; Johansson, Her and Hidigph987; Luchik and Tiederman,
1987). In this study, however, the goal was not to detect these kinelseots or evaluate thé AR(¢’)
associated with them. Rather, the goals were to detect a high amplitydeiaater than some value,
or an IDE, checking whether it was, for example, an event in the seaofalirth quadrant@2 + Q4)
according to the quadrant analysis technique, for Reynolds stresallemavmal turbulent heat, etc., and

to then evaluate its contribution 0AR(¢')1pE-



VAR =¢/'2 > kot? )
where the meanyp, and rms¢™, values used in previous condition (2) were long-term statistics, evalu-
ated from a previous long sample, and the wide-hat symbol means a shormh&an value in th&' time
filtering interval,

P 1 t-‘rT/Q

ST = = [ ) ®)
t—T/2

Then, once an event with condition (2) was detected, conditional pitapaith different conditions
was applied to determine whether the IDE satisfied a second or a secothirdrmbndition. Some of the
conditions included the foIIowingP(a\2 > kot2, ' < 0), to determine whether these events also be-
longed to events in the second or fourth quad(&#+Q4) for Reynolds stressl?(g’\2 > kT2, u' < 0, v < 0),
to determine whether these events also belonged to events in the fourtlanfu@gt) for Reynolds
stress; or the conditioﬂ?(&3 > ko2, u’ < 0, ' < 0), to determine whether the dissimilarity asso-
ciated with events itQ2 + Q4) for Reynolds stress was close to the dissimilarity associated with events
in (Q2+ Q4) for Reynolds stress and wall-normal turbulent heat at the same time. Fit{apand 1(b)

show some results from this algorithms.

(Ill.c) Natural dissimilarity in the frequency domain

Using the new variable the distribution of energy of the different spectra evaluated. Fig. 2(a) and
2(b) show/, ¢, p/, and¢’ spectra. These figures show thdtand ¢’ spectra present, for both flow
configurations, a shift toward higher frequencies as the distancethierwall increase, being always

more important fop’ than foru’ (this behavior is clearer from the spectrum of their differengg,

(I1.d) Velocity and temperature pressure-gradient interaction
There is a more significant correlation@fwith dp’ /0 thanu’ with dp’ /02 (Figure 3). This correlation
difference is the main cause of the dissimilarities in non-perturbed turbubeve;fbr in the decorrelation

of ' and®’ from the wall toward the central region.

IV. Dissimilarity in perturbed turbulent flows
(IV.a) Scheme of numerical simulations
To disrupt the mean-field analogy that exists in the developed conditions 6f4hDNS, different kinds

of perturbations were used in a narrow region of the computational dowa#t,the boundaries, of the
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Figure 2: Spectral density functions af , ¢, ¢’, andp’ at four positions from the wall for (a) channel and (b)
Couette flow. Viscous region (top-left); buffer region (taght); beginning of logarithmic region (bottom-left);
center region (bottom-right). Solid line, = «//u™; 0-0-0-0,a = 0'/0T; e.e.e,a = ¢'/¢T; 0.O.OO,

a = p'/p*. Note the different scales.
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Figure 5:Domain and location of spanwise slot used for perturbat@niid vertical lines denote the slot location;
vertical dotted lines denote sections where solution iseméd, and horizontal dotted lines, positions from the

wall where solution is presented. (a)Channel; (b)Couette. fl

second DNS. These perturbations were (a) local blowing and suctiondmarrow span-wise slot at the
wall, (b) local adverse and favorable streamwise pressure-grastigpe at a narrow span-wise volume
of the buffer region, (c) local adverse and favorable wall-normakpure-gradient steps at a narrow
span-wise volume of the buffer region, and (d) local wall temperatupsste

The following is a list of the different numerical experiments reported ifipations, which present

the most important dissimilarity between turbulent fluxes.

1. CHB6220: Perturbed channel flow with blowing/suction from the lowalt, W/ = = 220, v =

+0.60. WhereWW* is the width of the slot and™ the injected wall-normal velocity.

2. CFB6590: Perturbed plane Couette flow with blowing/suction from therlovedl, W+ = 590,
vt = +0.60.

3. CHABR220: Perturbed channel flow with an adverse/favorablarsingése pressure-gradient step
at the buffer region of the lower halfy’ * = 220, (9P/dz)* = 0.30 for adverse and-0.30 for

favorable.

4. CFABR590: Perturbed plane Couette flow with an adverse pressadegt step at the buffer
region of the lower half(¥ + = 590, (0P/dz)* = 0.18 for adverse and-0.18 for favorable.

(IV.b) Leading contributor terms to turbulent fluxes dissimilarity

viii
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of mean-field dissimilarity— — — — —, function of turbulence dissimilarity.



The differences betwe€itu'u') — (6’u’)) depend primarily on mean flow, and secondarily on turbulence,
with (u'v")0®/dy as the leading term. Conversely, the differences betwéen’) — (¢’v')) depend
mostly on mean flow dissimilarity, witlw’'v’)0® /0y as the leading term. In other words mean fields
wall-normal gradients play the most important rule in the dissimilarity betweennstvese velocity
and temperature mean turbulent fluxes. Figures 6(a), 6(b), 6(c),sbfv these results for blowing
and adverse pressure gradient step for both flow configurationshobe regions of the flow where
o®/0y = oU /oy — 00©/dy = 0 dissimilarity is minimal. Both flow configurations, channel and

Couette flow, present similar results.

(IV.c) A relation that holds for non-perturbed and perturbed turbulemifl
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Figure 7:0,.,s/ur-ms and (00 /0y)/(0U/dy) for channel flow perturbed with (a) blowing and (b) temperatu
step at the wallo - o - o - o, non-perturbed values. Solid line, onthe slet- — — —, W+; —. — . — . — — 5WT

downstream.

For Pr = 1 the following relation holds for the wall-layer for the simple non-perturbed parturbed

turbulent flows used in this study (Figures 7(a) and 7(b)):

Urms | Orms (4)
oUu/oy  00/dy
(IV.d) Turbulent heat transfer modeling
The following transformations of the Reynolds stresses using the wall-hgmadients of streamwise
velocity and temperature show a reasonabeiori predictions of the turbulent heat fluxes, as it is shown

in Figures 8(a) and 8(b), for both flow configurations.
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Figure 8:A prior comparison of modeled turbulent heat fii&u’)+ and(#’v’) *, for channel flow perturbed with
(a) blowing and (b) an adverse axial pressure gradient 8efid line, and+ - + - + - +(second symbol modeled),
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LN e //97’7718N 1, 00/0y
<9u>_<uu>urm5_<uu>aU/8y (5)
and,
(O ~ (') Orms ~ (u/v’>8®/8y (6)

Urms oU /oy

where all variables are in dimensionless form.
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